Projection, Lifting and Extended Formulation in Integer and Combinatorial Optimization

نویسنده

  • Egon Balas
چکیده

This is an overview of the significance and main uses of projection, lifting and extended formulation in integer and combinatorial optimization. Its first two sections deal with those basic properties of projection that make it such an effective and useful bridge between problem formulations in different spaces, i.e. different sets of variables. They discuss topics like projection and restriction, the integrality-preserving property of projection, the dimension of projected polyhedra, conditions for facets of a polyhedron to project into facets of its projections, and so on. The next two sections describe the use of projection for comparing the strength of different formulations of the same problem, and for proving the integrality of polyhedra by using extended formulations or lifting. Section 5 deals with disjunctive programming, or optimization over unions of polyhedra, whose most important incarnation are mixed 0-1 programs and their partial relaxations. It discusses the compact representation of the convex hull of a union of polyhedra through extended formulation, the connection between the projection of the latter and the polar of the convex hull, as well as the sequential convexification of facial disjunctive programs, among them mixed 0-1 programs, with the related concept of disjunctive rank. Section 6 reviews lift-and-project cuts, the construction of cut generating linear programs, and techniques for lifting and for strengthening disjunctive cuts. Section 7 discusses the recently discovered possibility of solving the higher dimensional cut generating linear program without explicitly constructing it, by a sequence of properly chosen pivots in the simplex tableau of the linear programming relaxation. Finally, section 8 deals with different ways of combining cuts with branch and bound, and briefly discusses computational experience with lift-and-project cuts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling Decision Problems Via Birkhoff Polyhedra

A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...

متن کامل

Lifting Linear Extension Complexity Bounds to the Mixed-Integer Setting

Mixed-integer mathematical programs are among the most commonly used models for a wide set of problems in Operations Research and related fields. However, there is still very little known about what can be expressed by small mixed-integer programs. In particular, prior to this work, it was open whether some classical problems, like the minimum odd-cut problem, can be expressed by a compact mixe...

متن کامل

Forthcoming in Mathematical Programming MAXIMIZING A CLASS OF SUBMODULAR UTILITY FUNCTIONS

Given a finite ground set N and a value vector a ∈ R , we consider optimization problems involving maximization of a submodular set utility function of the form h(S) = f (∑ i∈S ai ) , S ⊆ N , where f is a strictly concave, increasing, differentiable function. This function appears frequently in combinatorial optimization problems when modeling risk aversion and decreasing marginal preferences, ...

متن کامل

An Imperialist Competitive Algorithm and a Mixed Integer Programming Formulation for the Capacitated Vehicle Routing Problem

The Vehicle Routing Problem (VRP), a famous problem of operation research, holds a central place in combinatorial optimization problems. In this problem, a fleet vehicles with Q capacity start to move from depot and return after servicing to customers in which visit only ones each customer and load more than its capacity not at all. The objective is to minimize the number of used vehicles and t...

متن کامل

Column generation for extended formulations

Working in an extended variable space allows one to develop tight reformulations for mixed integer programs. However, the size of the extended formulation grows rapidly too large for a direct treatment by a MIP-solver. Then, one can use projection tools and derive valid inequalities for the original formulation, or consider an approximate extended formulation (f.i., by aggregating variables). B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Annals OR

دوره 140  شماره 

صفحات  -

تاریخ انتشار 2005